Incremental kernel PCA and the Nyström method
نویسندگان
چکیده
Incremental versions of batch algorithms are often desired, for increased time efficiency in the streaming data setting, or increased memory efficiency in general. In this paper we present a novel algorithm for incremental kernel PCA, based on rank one updates to the eigendecomposition of the kernel matrix, which is more computationally efficient than comparable existing algorithms. We extend our algorithm to incremental calculation of the Nyström approximation to the kernel matrix, the first such algorithm proposed. Incremental calculation of the Nyström approximation leads to further gains in memory efficiency, and allows for empirical evaluation of when a subset of sufficient size has been obtained.
منابع مشابه
Nyström Approximations for Scalable Face Recognition: A Comparative Study
Kernel principal component analysis (KPCA) is a widelyused statistical method for representation learning, where PCA is performed in reproducing kernel Hilbert space (RKHS) to extract nonlinear features from a set of training examples. Despite the success in various applications including face recognition, KPCA does not scale up well with the sample size, since, as in other kernel methods, it i...
متن کاملEmpirical Evaluation of Kernel PCA Approximation Methods in Classification Tasks
Kernel Principal Component Analysis (KPCA) is a popular dimensionality reduction technique with a wide range of applications. However, it suffers from the problem of poor scalability. Various approximation methods have been proposed in the past to overcome this problem. The Nyström method, Randomized Nonlinear Component Analysis (RNCA) and Streaming Kernel Principal Component Analysis (SKPCA) w...
متن کاملLess is More: Nyström Computational Regularization
We study Nyström type subsampling approaches to large scale kernel methods, and prove learning bounds in the statistical learning setting, where random sampling and high probability estimates are considered. In particular, we prove that these approaches can achieve optimal learning bounds, provided the subsampling level is suitably chosen. These results suggest a simple incremental variant of N...
متن کاملDimension Reduction: A Guided Tour
We give a tutorial overview of several geometric methods for dimension reduction. We divide the methods into projective methods and methods that model the manifold on which the data lies. For projective methods, we review projection pursuit, principal component analysis (PCA), kernel PCA, probabilistic PCA, canonical correlation analysis, oriented PCA, and several techniques for sufficient dime...
متن کاملGeometric Methods for Feature Extraction and Dimensional Reduction - A Guided Tour
We give a tutorial overview† of several geometric methods for feature selection and dimensional reduction. We divide the methods into projective methods and methods that model the manifold on which the data lies. For projective methods, we review projection pursuit, principal component analysis (PCA), kernel PCA, probabilistic PCA, and oriented PCA; and for the manifold methods, we review multi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- CoRR
دوره abs/1802.00043 شماره
صفحات -
تاریخ انتشار 2018